更多>>精华博文推荐
更多>>人气最旺专家

宋昭公特

领域:药都在线

介绍:在这里,人大代表行使的权力是A.立法权和决定权B.审议权和质询权C.任免权和监督权D.提案权和表决权*复习提问1、对政府权力进行制约和监督:为什么、怎么样2、政府做某件事的原因、措施必修二政治生活第三单元发展社会主义民主政治高考考点1.人民代表大会及其常设机关的法律地位2.人民代表大会的职权3.人民代表的产生4.人民代表的职责5.人民代表大会制度的基本内容6.人民代表大会与其他国家机关的关系第五课我国的人民代表大会制度人民代表大会:国家权力机关2、人民代表大会全国人民代表大会地方各级人民代表大会(性质、作用)3、人大代表①性质②地位③职权④常设机关地位产生任期义务:权利:①审议权②表决权③提案权④质询权1、人民如何行使当家作主的权力?①行使国家权力②协助宪法法律实施③与人民关系人民如何行使国家权力组成各级国家权力机关人民选出人大代表产生行政、审判、检察等机关统一行使国家权力具体行使管理国家和社会的权力决定全国和地方的一切重大事务1、人民怎样当家作主2、人民行使国家权力的机关——人民代表大会(1)全国人大性质:职权:地位及与其他国家机关关系常设机关:职权(2)地方各级人大我国国家权力机关完整体系:性质、地位、职权性质最高国家权力机关地方各级国家权力机关地位在我国的国家机构中居于最高地位,其他中央国家机关都由它产生,对它负责,受它监督本行政区域内的一切重大问题,都由它讨论决定,并由它监督实施职权最高立法权、最高决定权、最高任免权、最高监督权立法权、决定权、任免权、监督权常设机关全国人大常务委员会县级及县级以上人民代表大会设常务委员会,乡级人大不设常委会拓展深化:1、全国人大具有最高立法权、最高决定权、最高任免权、最高监督权。...

李萌

领域:互动百科

介绍:▲乌克兰极右翼团体11月26日在基辅举行集会支持乌克兰海军。w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际

利来国际老牌软件
本站新公告w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际
eqh | 2019-01-17 | 阅读(565) | 评论(939)
w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际
6lr | 2019-01-17 | 阅读(44) | 评论(687)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
a6f | 2019-01-17 | 阅读(807) | 评论(586)
材料二根据“历法”“敬授民时”等即可知中国古代科技重视实践和实用。【阅读全文】
fqm | 2019-01-17 | 阅读(782) | 评论(71)
”可见升国旗时的不庄重肃静是违法行为。【阅读全文】
nk7 | 2019-01-17 | 阅读(153) | 评论(208)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
nfw | 2019-01-16 | 阅读(967) | 评论(275)
表现型(性状)=基因型(基因)+环境一个性状可能是由多个基因决定的,反之,一个基因也可以影响多个性状。【阅读全文】
bne | 2019-01-16 | 阅读(876) | 评论(716)
在生产的过程中,车间发现了面料50D睐过胶布的底布(即有胶的那面)和面料的面接触后产生了化学作用,出现沾色现象,当时笫一时间想到的更换面料,但换面料要15天时间,货期不允许,车间也没办法等这么久,整个生产计划打乱了。【阅读全文】
6er | 2019-01-16 | 阅读(778) | 评论(513)
此外本次大赛的网络安全保障环节还引入了安全狗的态势感知系统,以实时了解大赛期间的网络安全态势,通过威胁分析功能以及风险管理功能,全面加强重点环节的网络安全防御能力和管理能力。【阅读全文】
w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际,w66历来国际
jgr | 2019-01-16 | 阅读(135) | 评论(535)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
4xy | 2019-01-15 | 阅读(944) | 评论(28)
”迪丽热巴凭借《漂亮的李慧珍》获得“双奖”。【阅读全文】
k5l | 2019-01-15 | 阅读(194) | 评论(664)
2、判读等压面。【阅读全文】
jf5 | 2019-01-15 | 阅读(928) | 评论(132)
为防范这些问题发生,政府应采取的措施是:①改进互联网安全技术②完善金融监管政策法规体系③限制高风险的金融产品④引导和规范行业自律组织的发展A.①②B.①③C.②④D.③④c(2015全国II卷)年8月,某市政府清理出涉企权力5157项,废止了其中3301项,对停留的涉企权力向社会全部公开,并表示严肃查处涉企审批、收费中的违法违纪问题,这一做法的预期效果是:①政府对企业的监督与管理更有效率②“看得见的手”受到有力的制约③市场机制能更好的发挥资源配置作用④企业的市场竞争力得到增强A.①②B.①③C.②③D.③④(2015高考江苏卷)7.我国央行白2015年2月5日起全面下调金融机构人民币存款准备金率个百分点。【阅读全文】
ast | 2019-01-15 | 阅读(617) | 评论(553)
“只要我们能够团结一致,就一定能够阻止建造新的美军基地”在11日的集会上,到处都能看到“对边野古基地说不”“(冲绳)县民众不言放弃”等标语。【阅读全文】
jvw | 2019-01-14 | 阅读(209) | 评论(906)
结尾:分析问题,明确方向。【阅读全文】
bxu | 2019-01-14 | 阅读(694) | 评论(136)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
共5页

友情链接,当前时间:2019-01-17

w66利来国际 利来国际w66平台 w66利来guoji w66.con 利来国际备用
wwww66com利来 利来娱乐帐户 利来国际AG旗舰店 利来国际w66备用 利来天用户
w66.利来国际 利来国际官网 w66.cum w66利来娱乐公司 利来国际备用
利来娱乐在线平台 利来国际老牌w66 利来国际最老牌 w66利来娱乐 利来娱乐备用
城口县| 寻乌县| 开阳县| 凤凰县| 尼木县| 福清市| 南陵县| 方山县| 秦皇岛市| 宁远县| 屯门区| 肇源县| 虞城县| 自贡市| 夏河县| 藁城市| 西青区| 天气| 贵定县| 柳州市| 新乡市| 灌云县| 临泽县| 五寨县| 伊川县| 崇信县| 双桥区| 林芝县| 民丰县| 阿克苏市| 齐齐哈尔市| 双峰县| 东丰县| 中西区| 甘孜县| 灵璧县| 青铜峡市| 济宁市| 永泰县| 信丰县| 宁阳县| http://m.83374819.cn http://m.17307369.cn http://m.40167352.cn http://m.87928705.cn http://m.43097072.cn http://m.55370238.cn